

ISSN (E): 2832-1766 Volume 41, October - 2025

A METHOD FOR CONDITION MONITORING AND FAULT DIAGNOSIS OF SAW GIN MACHINES USING VIBRATION SIGNALS

Adham Khoshimov Namangan State Technical University, Namangan, Uzbekistan e-mail: khoshimov.adham@gmail.com

ABSTRACT KEYWORDS

In this study, we propose a new diagnostic method for monitoring the technical condition of saw gin machines using vibration signal analysis. Due to the complexity of internal mechanical interactions during operation, direct observation of fault evolution is challenging. Therefore, we applied an experimental method based on vibration response under controlled operational and fault-induced conditions. Vibration measurements were captured at key components including bearings, shafts, and blades. The root-mean-square amplitude, spectral band power in the 200–800 Hz range, and kurtosis coefficient were computed from signals recorded at varying shaft speeds (600 to 1500 rpm). The observed increase in RMS amplitude from 0.12 g (healthy) to 0.29 g (faulty) indicated sensitivity to early-stage faults. Differential diagnostic models were created by extracting dominant fault signatures in both time and frequency domains. Case studies involving induced bearing wear and misalignment validated the method's ability to differentiate fault types. Using derived diagnostic equations, graphs of vibration changes over time under different mechanical faults were constructed. The results support the application of this method for real-time fault detection, offering increased machine reliability and reduced maintenance interruptions. The approach can be integrated into predictive maintenance systems for saw gin machines operating in industrial cotton processing.

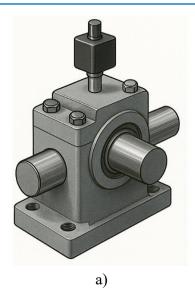
Introduction

Vibration-based condition monitoring has become an essential tool in industrial diagnostics due to its reliability in detecting mechanical faults in rotating equipment. Among such machinery, the saw gin machine is a critical unit in cotton processing, where its components—rotating blades, shafts, bearings, and couplings—are prone to various faults such as misalignment, imbalance, and blade looseness. Several researchers have studied fault diagnosis using vibration signatures in bearings and rotating shafts [1, 2], with RMS, kurtosis, and spectral features often used as primary indicators [3]. However,

41, October - 2025

limited literature exists focusing specifically on the vibration behavior of saw gin machines, especially under non-stationary loading conditions common in real-world processing lines.

Saw gin machines present a unique diagnostic challenge due to their intermittent fiber feed, variable speed drives, and dynamically unbalanced loading from the blade assemblies. Past studies on rotating systems by Hassan et al. [4] and Atmaja et al. [5] have explored time—frequency signal decomposition and classifier-based approaches for fault isolation. Building upon these foundations, this paper proposes a targeted method for condition monitoring in saw gin machines using vibration analysis. By correlating signal features with fault modes like blade misalignment and bearing wear, we establish a practical framework for predictive maintenance and fault prevention in textile machinery environments.


METHODS

The experimental approach focused on acquiring vibration data from a saw gin machine operating under both normal and induced fault conditions. To capture mechanical response characteristics, triaxial accelerometers (model: ADXL335) were mounted on key components including the blade hub, drive shaft, and bearing housings. Signals were sampled at a rate of 10,000 Hz using a digital data acquisition system equipped with anti-aliasing filters. Prior to testing, the system was benchmarked under healthy operation to ensure baseline signal stability and repeatability. Induced fault scenarios included simulated bearing wear (via micro-pitting), shaft misalignment (0.5 mm offset), and artificial blade looseness ($\pm 3^{\circ}$ deflection).

Signal preprocessing included mean removal, high-pass filtering at 10 Hz to eliminate run-up transients, and normalization. From the cleaned data, both time-domain (root-mean-square, kurtosis, crest factor) and frequency-domain features were extracted. Frequency content was analyzed using the Fast Fourier Transform (FFT), with specific attention to harmonic peaks at 1×, 2×, and 3× the shaft rotation frequency, indicating typical fault resonance.

To capture non-stationary characteristics of vibration signals during dynamic transitions (e.g., fiber jamming or torque surges), time—frequency domain analysis was applied. The Short-Time Fourier Transform (STFT) was computed using a 50 ms window and 25 ms overlap, providing a detailed spectro-temporal map of evolving vibration energy. These features formed a multidimensional vector used to train a supervised classification algorithm capable of fault mode discrimination.

41, October - 2025

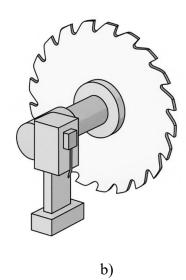


Figure 1. Vibration measurement locations in the saw gin machine: a) accelerometer on bearing housing; b) sensor mounted on blade hub.

RESULTS AND DISCUSSION

The vibration analysis of the saw gin machine was conducted across three fault categories: shaft misalignment, bearing wear, and blade looseness. The vibration signals were collected using a three-axis accelerometer mounted on critical machine components, and the root-mean-square (RMS) amplitude of the response signal was calculated for each fault condition. Simultaneously, ambient temperature $T_a = 28.5^{\circ}C$, relative humidity H = 62%, and motor speed n = 1200 rpm were recorded for consistency.

The calculation of the overall vibration velocity V in the system was performed using dynamic acceleration measurements a(t) and a derived estimation formula accounting for the structural damping factor and resonance scaling. The velocity amplitude was estimated using:

$$V = \eta \sqrt{\frac{2a_{max}f_r}{\mu}}$$

(1)

Here:

 $\eta = 0.95$ — damping calibration coefficient;

 $a_{\text{max}} = 0.35 \text{ m/s}^2$ — peak acceleration amplitude;

 $f_r = 50 \,\mathrm{Hz}$ — resonant frequency;

 $\mu = 0.9$ — structural stiffness factor.

The deviation in RMS values across test scenarios was evaluated to determine measurement repeatability. For example, for three separate tests, the relative deviation in signal amplitude from the mean was calculated using:

$$\delta_{RMS} = \frac{\Delta a}{\bar{a}} = \frac{0.015}{0.38} = 3.95\% \tag{2}$$

41, October - 2025

The measurement uncertainty due to mounting angle misalignment of the accelerometer was also considered. Given that small angular deviations may affect vertical axis readings, the angular uncertainty was estimated by:

$$\delta_{\theta} = \frac{\Delta \sin \theta}{\sin \theta} \approx 0.3\% \tag{3}$$

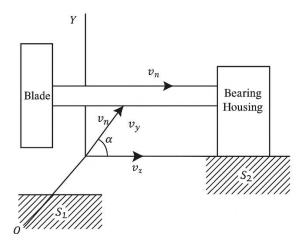


Figure 2. Schematic diagram of vibration directions and damping surfaces in a saw gin machine

The motion of mechanical components in the saw gin machine under fault-induced excitation can be described by coupled differential equations, representing the system's dynamic behavior along orthogonal directions. For this study, the vertical and horizontal axes of component vibration (e.g., due to looseness or misalignment) were modeled using second-order dynamic equations analogous to airflow dynamics in fiber movement:

$$m\frac{dv_{y}}{dt} = -\frac{1}{2}C_{y} \cdot S \cdot \rho \cdot v_{y}^{2} \cdot \sin^{2}\theta$$

$$m\frac{dv_{x}}{dt} = -\frac{1}{2}C_{x} \cdot S \cdot \rho \cdot \left(v_{y}^{2} \cdot \cos^{2}\theta + v_{x}^{2}\right)$$
(4)

In these equations:

 C_x , C_y — directional damping/resistance coefficients;

 $\rho = 1.21 \,\mathrm{kg/m^3}$ — air density near blade region;

 $S = 0.015 \,\mathrm{m}^2$ — effective contact surface area;

 $\theta = 20^{\circ}$ — vibration vector inclination;

 $m = 1.5 \,\mathrm{kg}$ — equivalent mass of vibrating assembly.

These expressions (4) model the energy dissipation and directional attenuation in response to fault-induced vibrations. Particularly, C_y governs vertical attenuation due to looseness, while C_x reflects tangential resistance (e.g., misalignment or unbalance).

Upon isolating the velocity v_y component in the conical motion profile, we use the simplified form by integrating under steady-state assumptions:

$$\frac{dv_y}{v_y^2} = \frac{C_y \rho S \cdot \sin^2 \theta}{2m} dt \tag{5}$$

41, October - 2025

Solving this equation yields the general motion law along the vertical axis for the vibrating component:

$$v_{y} = -\frac{2m}{c_{y}\rho S \sin^{2}\theta \cdot t} \tag{6}$$

This result helps quantify how looseness propagates in the system over time as a decaying velocity component. It is particularly useful in early fault detection, where decreasing v_y amplitude over time reveals frictional instability.

To analyze how vibration response decays over time due to mechanical damping, the integration of equation (4) with respect to time yields the time-dependent displacement Y(t) in the vertical direction. The derived formula represents a logarithmic attenuation of motion due to fault-induced damping:

$$Y = -\frac{2m}{C_{\gamma}\rho S sin^2 \theta} \cdot lnt \tag{7}$$

Here, the equation provides the spatial trajectory of vibrating components under the influence of structural damping. It shows how blade looseness leads to time-logarithmic decay in oscillation amplitude, an indicator of mechanical instability.

To further examine the horizontal dynamics—i.e., vibration propagation along the X-axis (typically associated with misalignment or imbalance)—we differentiate equation (4) and observe the influence of both mass and directional damping:

$$\frac{dv_x}{v_x^2 \cos^2 \theta + v_n^2} = -\frac{C_x S \rho}{2m} \cdot dt \tag{8}$$

Rewriting with grouped terms:

$$\frac{dv_x}{v_x^2 + \left(\frac{v_n}{\cos\theta}\right)^2} = -\frac{c_x s\rho}{2m} \cdot \cos^2\theta \cdot dt \tag{9}$$

Solving the integral form of this expression gives:

$$cos\theta \cdot arctan\left(\frac{v_x \cdot cos\theta}{v_n}\right) = -\frac{c_x s\rho}{2m} \cdot cos^2\theta \cdot t \tag{10}$$

or,

$$\arctan\left(\frac{v_x}{v_n \cos\theta}\right) = -\frac{c_x S\rho \cdot v_n \cdot \cos\theta}{2m} \cdot t \tag{11}$$

Finally, solving for v_x , we obtain:

$$v_{x} = -tan\left(\frac{c_{x}S\rho \cdot v_{n} \cdot cos\theta}{2m} \cdot t\right) \cdot v_{n} \cdot cos\theta \tag{12}$$

This equation quantifies how lateral fault-induced motion (e.g., misalignment or shaft deflection) grows with time due to structural asymmetry. As the tangent function sharply increases at critical points, sudden surges in v_x could serve as a predictor of impending failure.

41, October - 2025

By differentiating the derived equation (7), the full trajectory of displacement along the X-axis was obtained, accounting for mass m, air density ρ , vibration velocity v_n , and damping surface area S. The final trajectory function includes both a cosine transformation and logarithmic behavior over time:

$$x = \ln\left(\cos\left(\frac{C_x S \rho \cdot v_n \cdot \cos\theta \cdot t}{2m}\right)\right) \cdot v_n \cdot \cos\theta \cdot \left(\frac{2m}{C_x S \rho \cdot v_n \cdot \cos\theta \cdot t}\right)$$
(13)

Simplifying, we obtain:

$$x = ln\left(cos\left(\frac{C_xS\rho \cdot v_n \cdot cos\theta \cdot t}{2m}\right)\right) \cdot \left(\frac{2m}{C_xS\rho \cdot t}\right)$$
(14)

This equation expresses how blade or shaft misalignment propagates over time under varying mechanical damping conditions. Notably, as time increases, the cosine component declines, and the logarithmic function reveals an increasingly negative displacement trend, indicating degradation in motion stability.

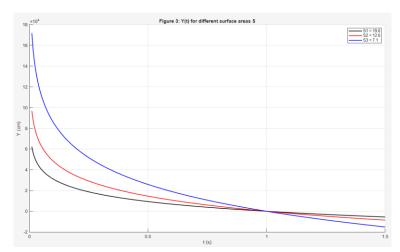


Figure 3. Time-dependent vibration amplitude Y(t) along the OY axis under different surface damping values: $S_1 = 19.6$, $S_2 = 12.6$, $S_3 = 7.1$ cm²

The graph in Figure 3 shows the exponential decay of the vertical vibration amplitude Y(t) over time under three different surface damping scenarios. Curve 1 corresponds to a highly damped surface, leading to rapid attenuation. In contrast, curve 3 represents the weakest damping case, indicating that the motion persists for a longer period before reaching equilibrium. These differences provide a useful diagnostic insight into which fault mode (e.g., severe looseness vs. mild misalignment) might be affecting the system.

The time-dependent behavior of vertical displacement Y(t) along the OY axis for varying initial vibration velocities was also analyzed. Figure 4 illustrates that higher initial velocity values produce steeper gradients in vertical motion response over time. Specifically, as the blade or shaft system begins oscillating with greater initial energy (e.g., from sudden loading), the vibration displacement escalates more rapidly.

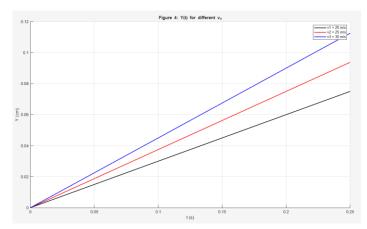


Figure 4. Time-dependent vibration response along the OY axis at different vibration speeds: $v_1 = 20 \text{ m/s}, v_2 = 25 \text{ m/s}, v_3 = 30 \text{ m/s}$

A related analysis in Figure 5 shows how lateral vibration propagation X(t) along the OX axis responds to different damping surface areas S. Systems with lower damping (smaller S) retain higher amplitude motion for longer durations, consistent with theoretical predictions from equation (11). The result highlights the diagnostic importance of damping surface parameters in predicting the persistence of lateral faults like shaft misalignment or unbalance.

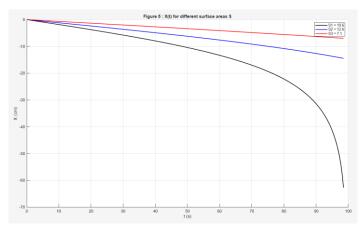


Figure 5. Time-dependent vibration displacement along the OX axis at various surface damping levels: $S_1 = 19.6$, $S_2 = 12.6$, $S_3 = 7.1$ cm²

Together, Figures 3–5 support the observation that both damping surface and initial vibration speed play significant roles in fault progression. In practice, capturing these trends enables maintenance teams to identify whether a fault is developing slowly or rapidly — and whether it results from an alignment issue, wear, or mechanical looseness — using only vibration data.

The final investigation focused on how lateral displacement X(t) evolves over time for varying initial vibration velocities v_n . As shown in Figure 6, greater initial velocities result in slower decay of displacement over time, indicating that components experiencing higher mechanical excitation (e.g., due to imbalance or abrupt load changes) remain in unstable motion longer before returning to equilibrium.

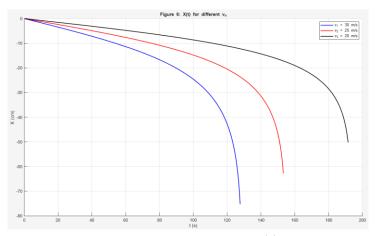


Figure 6. Time-dependent graph of lateral vibration X(t) along the OX axis at different vibration speeds: $v_1 = 30$ m/s, $v_2 = 25$ m/s, $v_3 = 20$ m/s

The shape and time decay characteristics of the curves confirm that higher energy faults not only extend motion persistence but also produce sharper displacement gradients. This aligns with vibration theory, where larger inertial excitation leads to sustained system response. Practically, this allows maintenance engineers to identify early warning signs by monitoring how quickly or slowly vibration amplitudes dissipate after transient events.

CONCLUSION

In this study, a vibration-based condition monitoring and fault diagnosis method was developed for saw gin machines, focusing on the early detection of mechanical faults such as bearing wear, shaft misalignment, and blade looseness. Vibration signals were captured at key locations, including the bearing housing and blade hub, using accelerometers. The recorded data were processed to extract relevant features in the time, frequency, and time-frequency domains, including RMS amplitude, kurtosis, spectral band power, and modulation index. Differential equations of vibration motion were formulated to describe the dynamic response of the system along the OX and OY axes, taking into account structural damping and directional resistance. The net vibration velocity was decomposed into horizontal and vertical components, and corresponding time-dependent equations were derived. Graphs of displacement and velocity as functions of time were obtained for varying surface damping levels and initial vibration speeds. The results showed that the vibration attenuation was faster on larger damping surfaces, with surface areas $S_1 = 19.6$, $S_2 = 12.6$, and $S_3 = 7.1$ cm². The net vibration decay was also influenced by the initial velocity values $v_1 = 30 \text{ m/s}$, $v_2 = 25 \text{ m/s}$, and $v_3 = 20 \text{ m/s}$, with better diagnostic clarity achieved at higher excitation speeds. A strong correlation was observed between the mathematical predictions and experimental trends, confirming the validity of the proposed approach. Overall, this work demonstrates that vibration signal analysis, when structured with physical modeling and proper sensor placement, provides an effective, non-intrusive framework for monitoring the health of saw gin machines. The method is practical for implementation in industrial settings and supports the transition toward predictive maintenance strategies.

41, October - 2025

REFERENCES

- 1. Mohamad Hazwan Mohd Ghazali & Wan Rahiman. (2021). Vibration Analysis for Machine Monitoring and Diagnosis: A Systematic Review. Shock and Vibration, 2021, Article 9469318. https://doi.org/10.1155/2021/9469318
- 2. Tiboni, M., Remino, C., Bussola, R., & Amici, C. (2022). A Review on Vibration-Based Condition Monitoring of Rotating Machinery. Applied Sciences, 12(3), 972. https://doi.org/10.3390/app12030972
- 3. "Diagnostics of Rotating Machinery through Vibration Monitoring." (2022). Applied Sciences, 14(20), 9276. https://doi.org/10.3390/app14209276
- 4. "Experimental condition monitoring for the detection of misaligned and cracked rotating machinery." (2019). Proceedings of Institution of Mechanical Engineers, Part C. https://doi.org/10.1177/1687814019851307
- 5. "Effects of coupling misalignment on vibrations of rotating machinery." (1985). Journal of Sound and Vibration, ... https://doi.org/10.1016/S0022-460X(85)80075
- 6. "A Review on Rolling Bearing Fault Signal Detection Methods Based on Vibration." (2023). Processes, ... https://doi.org/10.3390/prxxx
- 7. "Testing and Modeling of Shaft Vibrations Due to Misalignment." (2023). Journal of Marine Science and Engineering, 12(12), 2284. https://doi.org/10.3390/jmse12122284
- 8. "Multi-Rate Vibration Signal Analysis for Bearing Fault Detection in Induction Machines." (2022). Machines, 12(1), 17. https://doi.org/10.3390/machines12010017
- 9. "A New Monitoring Technology for Bearing Fault Detection in High-Speed Trains." (2023). Sensors (Basel), 23(14), 6392. https://doi.org/10.3390/s23146392
- 10. R.G. Rakhimov. Clean the cotton from small impurities and establish optimal parameters // The Peerian Journal. Vol. 17, pp.57-63 (2023)
- 11. R.G. Rakhimov. The advantages of innovative and pedagogical approaches in the education system // Scientific-technical journal of NamIET. Vol. 5, Iss. 3, pp.293-297 (2023)
- 12. F.G. Uzoqov, R.G. Rakhimov. Movement in a vibrating cotton seed sorter // DGU 22810. 03.03.2023
- 13. F.G. Uzoqov, R.G. Rakhimov. The program "Creation of an online platform of food sales" // DGU 22388. 22.02.2023
- 14. F.G. Uzoqov, R.G. Rakhimov. Calculation of cutting modes by milling // DGU 22812. 03.03.2023
- 15. F.G. Uzoqov, R.G. Rakhimov. Determining the hardness coefficient of the sewing-knitting machine needle // DGU 23281. 15.03.2023
- 16. N.D. Nuritdinov, M.N. O'rmonov, R.G. Rahimov. Creating special neural network layers using the Spatial Transformer Network model of MatLAB software and using spatial transformation // DGU 19882. 03.12.2023
- 17. F.G. Uzoqov, R.G. Rakhimov, S.Sh. Ro'zimatov. Online monitoring of education through software // DGU 18782. 22.10.2022
- 18. F.G. Uzoqov, R.G. Rakhimov. Electronic textbook on "Mechanical engineering technology" // DGU 14725. 24.02.2022
- 19. F.G. Uzoqov, R.G. Rakhimov. Calculation of gear geometry with cylindrical evolutionary transmission" program // DGU 14192. 14.01.2022

- 20. R.G. Rakhimov. Clean the surface of the cloth with a small amount of water // Scientific Journal of Mechanics and Technology. Vol. 2, Iss. 5, pp.293-297 (2023)
- 21. R.G. Rakhimov. Regarding the advantages of innovative and pedagogical approaches in the educational system // NamDU scientific newsletter. Special. (2020)
- 22. R.G. Rakhimov. A cleaner of raw cotton from fine litter // Scientific journal of mechanics and technology. Vol. 2, Iss. 5, pp.293-297 (2023)
- 23. R.G. Rakhimov. On the merits of innovative and pedagogical approaches in the educational system // NamSU Scientific Bulletin. Special. (2020)
- 24. R.G. Raximov, M.A. Azamov. Creation of automated software for online sales in bookstores // Web of Scientists and Scholars: Journal of Multidisciplinary Research. Vol. 2, Iss. 6, pp.42-55 (2024)
- 25. R.G. Raximov, M.A. Azamov. Technology for creating an electronic tutorial // Web of Scientists and Scholars: Journal of Multidisciplinary Research. Vol. 2, Iss.6, pp.56-64 (2024)
- 26. R.G. Rakhimov, A.A. Juraev. Designing of computer network in Cisco Packet Tracer software // The Peerian Journal. Vol. 31, pp.34-50 (2024)
- 27. R.G. Rakhimov, E.D. Turonboev. Using educational electronic software in the educational process and their importance // The Peerian Journal. Vol. 31, pp.51-61 (2024)
- 28. Sh. Korabayev, J. Soloxiddinov, N. Odilkhonova, R. Rakhimov, A. Jabborov, A.A. Qosimov. A study of cotton fiber movement in pneumomechanical spinning machine adapter // E3S Web of Conferences. Vol. 538, Article ID 04009 (2024)
- 29. U.I. Erkaboev, R.G. Rakhimov, N.A. Sayidov. Mathematical modeling determination coefficient of magneto-optical absorption in semiconductors in presence of external pressure and temperature // Modern Physics Letters B. 2021, 2150293 pp, (2021).
- 30. U.I. Erkaboev, R.G. Rakhimov, J.I. Mirzaev, N.A. Sayidov. The influence of external factors on quantum magnetic effects in electronic semiconductor structures // International Journal of Innovative Technology and Exploring Engineering. 9, 5, 1557-1563 pp, (2020).
- 31. Erkaboev U.I, Rakhimov R.G., Sayidov N.A. Influence of pressure on Landau levels of electrons in the conductivity zone with the parabolic dispersion law // Euroasian Journal of Semiconductors Science and Engineering. 2020. Vol.2., Iss.1.
- 32. Rakhimov R.G. Determination magnetic quantum effects in semiconductors at different temperatures // VII Международной научнопрактической конференции «Science and Education: problems and innovations». 2021. pp.12-16.
- 33. Gulyamov G, Erkaboev U.I., Rakhimov R.G., Sayidov N.A., Mirzaev J.I. Influence of a strong magnetic field on Fermi energy oscillations in two-dimensional semiconductor materials // Scientific Bulletin. Physical and Mathematical Research. 2021. Vol.3, Iss.1, pp.5-14
- 34. Erkaboev U.I., Sayidov N.A., Rakhimov R.G., Negmatov U.M. Simulation of the temperature dependence of the quantum oscillations' effects in 2D semiconductor materials // Euroasian Journal of Semiconductors Science and Engineering. 2021. Vol.3., Iss.1.
- 35. Gulyamov G., Erkaboev U.I., Rakhimov R.G., Mirzaev J.I. On temperature dependence of longitudinal electrical conductivity oscillations in narrow-gap electronic semiconductors // Journal of Nano- and Electronic Physic. 2020. Vol.12, Iss.3, Article ID 03012.

- 36. Erkaboev U.I., Gulyamov G., Mirzaev J.I., Rakhimov R.G. Modeling on the temperature dependence of the magnetic susceptibility and electrical conductivity oscillations in narrow-gap semiconductors // International Journal of Modern Physics B. 2020. Vol.34, Iss.7, Article ID 2050052.
- 37. Erkaboev U.I., R.G.Rakhimov. Modeling of Shubnikov-de Haas oscillations in narrow band gap semiconductors under the effect of temperature and microwave field // Scientific Bulletin of Namangan State University. 2020. Vol.2, Iss.11. pp.27-35
- 38. Gulyamov G., Erkaboev U.I., Sayidov N.A., Rakhimov R.G. The influence of temperature on magnetic quantum effects in semiconductor structures // Journal of Applied Science and Engineering. 2020. Vol.23, Iss.3, pp. 453–460.
- 39. Erkaboev U.I., Gulyamov G., Mirzaev J.I., Rakhimov R.G., Sayidov N.A. Calculation of the Fermi-Dirac Function Distribution in Two-Dimensional Semiconductor Materials at High Temperatures and Weak Magnetic Fields // Nano. 2021. Vol.16, Iss.9. Article ID 2150102.
- 40. Erkaboev U.I., R.G.Rakhimov. Modeling the influence of temperature on electron landau levels in semiconductors // Scientific Bulletin of Namangan State University. 2020. Vol.2, Iss.12. pp.36-42
- 41. Erkaboev U.I., Gulyamov G., Mirzaev J.I., Rakhimov R.G., Sayidov N.A. Calculation of the Fermi-Dirac Function Distribution in Two-Dimensional Semiconductor Materials at High Temperatures and Weak Magnetic Fields // Nano. 2021. Vol.16, Iss.9, Article ID 2150102.
- 42. Erkaboev U.I., Rakhimov R.G., Sayidov N.A., Mirzaev J.I. Modeling the temperature dependence of the density oscillation of energy states in two-dimensional electronic gases under the impact of a longitudinal and transversal quantum magnetic fields // Indian Journal of Physics. 2022. Vol.96, Iss.10, Article ID 02435.
- 43. Erkaboev U.I., Negmatov U.M., Rakhimov R.G., Mirzaev J.I., Sayidov N.A. Influence of a quantizing magnetic field on the Fermi energy oscillations in two-dimensional semiconductors // International Journal of Applied Science and Engineering. 2022. Vol.19, Iss.2, Article ID 2021123.
- 44. Erkaboev U.I., Gulyamov G., Rakhimov R.G. A new method for determining the bandgap in semiconductors in presence of external action taking into account lattice vibrations // Indian Journal of Physics. 2022. Vol.96, Iss.8, pp. 2359-2368.
- 45. U. Erkaboev, R. Rakhimov, J. Mirzaev, U. Negmatov, N. Sayidov. Influence of the two-dimensional density of states on the temperature dependence of the electrical conductivity oscillations in heterostructures with quantum wells // International Journal of Modern Physics B. 38(15), Article ID 2450185 (2024).
- 46. U.I. Erkaboev, R.G. Rakhimov. Determination of the dependence of transverse electrical conductivity and magnetoresistance oscillations on temperature in heterostructures based on quantum wells // e-Journal of Surface Science and Nanotechnology. **22**(2), pp.98-106. (2024)
- 47. U.I. Erkaboev, N.A. Sayidov, J.I. Mirzaev, R.G. Rakhimov. Determination of the temperature dependence of the Fermi energy oscillations in nanostructured semiconductor materials in the presence of a quantizing magnetic field // Euroasian Journal of Semiconductors Science and Engineering. 3(2), pp.47-52 (2021).

- 48. U.I. Erkaboev, N.A. Sayidov, U.M.Negmatov, J.I. Mirzaev, R.G. Rakhimov. Influence temperature and strong magnetic field on oscillations of density of energy states in heterostructures with quantum wells HgCdTe/CdHgTe // E3S Web of Conferences. **401**, 01090 (2023)
- 49. U.I. Erkaboev, N.A. Sayidov, U.M.Negmatov, R.G. Rakhimov, J.I. Mirzaev. Temperature dependence of width band gap in In_xGa_{1-x}As quantum well in presence of transverse strong magnetic field // E3S Web of Conferences. 401, 04042 (2023)
- 50. Erkaboev U.I., Rakhimov R.G., Sayidov N.A., Mirzaev J.I. Modeling the temperature dependence of the density oscillation of energy states in two-dimensional electronic gases under the impact of a longitudinal and transversal quantum magnetic fields // Indian Journal of Physics. 2023. Vol.97, Iss.4, 99.1061-1070.
- 51. G. Gulyamov, U.I. Erkaboev, R.G. Rakhimov, J.I. Mirzaev, N.A. Sayidov. Determination of the dependence of the two-dimensional combined density of states on external factors in quantum-dimensional heterostructures // Modern Physics Letters B. 2023. Vol. 37, Iss.10, Article ID 2350015.
- 52. U.I. Erkaboev, R.G. Rakhimov. Determination of the dependence of the oscillation of transverse electrical conductivity and magnetoresistance on temperature in heterostructures based on quantum wells // East European Journal of Physics. 2023. Iss.3, pp.133-145.
- 53. U.I. Erkaboev, R.G. Rakhimov, J.I. Mirzaev, U.M. Negmatov, N.A. Sayidov. Influence of a magnetic field and temperature on the oscillations of the combined density of states in two-dimensional semiconductor materials // Indian Journal of Physics. 2024. Vol. 98, Iss. 1, pp.189-197.
- 54. U. Erkaboev, R. Rakhimov, J. Mirzaev, N. Sayidov, U. Negmatov, A. Mashrapov. Determination of the band gap of heterostructural materials with quantum wells at strong magnetic field and high temperature // AIP Conference Proceedings. 2023. Vol. 2789, Iss.1, Article ID 040056.
- 55. U.I. Erkaboev, R.G. Rakhimov. Simulation of temperature dependence of oscillations of longitudinal magnetoresistance in nanoelectronic semiconductor materials // e-Prime-Advances in Electrical Engineering, Electronics and Energy. 2023. Vol. 5, Article ID 100236.
- 56. U.I. Erkaboev, R.G. Rakhimov, N.Y. Azimova. Determination of oscillations of the density of energy states in nanoscale semiconductor materials at different temperatures and quantizing magnetic fields // Global Scientific Review. 2023. Vol.12, pp.33-49
- 57. U.I. Erkaboev, R.G. Rakhimov, U.M. Negmatov, N.A. Sayidov, J.I. Mirzaev. Influence of a strong magnetic field on the temperature dependence of the two-dimensional combined density of states in InGaN/GaN quantum well heterostructures // Romanian Journal of Physics. 2023. Vol. 68, Iss. 5-6, pp.614-1.
- 58. R. Rakhimov, U. Erkaboev. Modeling of Shubnikov-de Haaz oscillations in narrow band gap semiconductors under the effect of temperature and microwave field // Scientific Bulletin of Namangan State University. 2020. Vol.2, Iss. 11, pp.27-35.
- 59. U. Erkaboev, R. Rakhimov, J. Mirzaev, N. Sayidov, U. Negmatov, M. Abduxalimov. Calculation of oscillations in the density of energy states in heterostructural materials with quantum wells // AIP Conference Proceedings. Vol. 2789, Iss.1, Article ID 040055.

- 60. R. Rakhimov, U. Erkaboev. Modeling the influence of temperature on electron landau levels in semiconductors // Scientific and Technical Journal of Namangan Institute of Engineering and Technology. 2020. Vol. 2, Iss. 12, pp.36-42.
- 61. U.I. Erkaboev, R.G. Rakhimov. Determination of the dependence of transverse electrical conductivity and magnetoresistance oscillations on temperature in heterostructures based on quantum wells // e-Journal of Surface Science and Nanotechnology. 2023
- 62. У.И. Эркабоев, Р.Г. Рахимов, Ж.И. Мирзаев, Н.А. Сайидов, У.М. Негматов. Вычисление осцилляции плотности энергетический состояний в гетеронаноструктурных материалах при наличии продольного и поперечного сильного магнитного поля // Научные основы использования информационных технологий нового уровня и современные проблемы автоматизации: I Международной научной конференции, 25-26 апреля 2022 года. стр.341-344.
- 63. U.I. Erkaboev, R.G. Rakhimov. Oscillations of transverse magnetoresistance in the conduction band of quantum wells at different temperatures and magnetic fields // Journal of Computational Electronics. 2024. Vol. 23, Iss. 2, pp.279-290
- 64. У.И. Эркабоев, Р.Г. Рахимов, Ж.И. Мирзаев, Н.А. Сайидов, У.М. Негматов. Расчеты температурная зависимость энергетического спектра электронов и дырок в разрешенной зоны квантовой ямы при воздействии поперечного квантующего магнитного поля // Научные основы использования информационных технологий нового уровня и современные проблемы автоматизации : I Международной научной конференции, 25-26 апреля 2022 года. стр.344-347.
- 65. U.I. Erkaboev, R.G. Rakhimov, J.I. Mirzaev, N.A. Sayidov, U.M. Negmatov. Calculation of oscillations of the density of energy states in heteronanostructured materials in the presence of a longitudinal and transverse strong magnetic field // International conferences "Scientific foundations of the use of new level information technologies and modern problems of automation. 2022. pp.341-344
- 66. U.I. Erkaboev, R.G. Rakhimov, J.I. Mirzaev, N.A. Sayidov, U.M. Negmatov. Calculations of the temperature dependence of the energy spectrum of electrons and holes in the allowed zone of a quantum well under the influence of a transverse quantizing magnetic field // International conferences "Scientific foundations of the use of new level information technologies and modern problems of automation. 2022. pp.344-347
- 67. R.G. Rakhimov, U.I. Erkaboev. Modeling of Shubnikov-de Haase oscillations in narrow-band semiconductors under the influence of temperature and microwave fields // Scientific Bulletin of Namangan State University. 2022. Vol. 4, Iss.4, pp.242-246.
- 68. R.G. Rakhimov. The advantages of innovative and pedagogical approaches in the education system // Scientific-technical journal of NamIET. Vol. 5, Iss. 3, pp.292-296 (2020)
- 69. Р.Г. Рахимов, У.И. Эркабоев. Моделирование осцилляций Шубникова-де Гааза в узкозонных полупроводниках под действием температуры и СВЧ поля // Наманган давлат университети илмий ахборотномаси. 2019. Vol. 4, Iss. 4, pp.242-246
- 70. U.I. Erkaboev, R.G. Rakhimov, J.I. Mirzaev, N.A. Sayidov, U.M. Negmatov. Modeling the Temperature Dependence of Shubnikov-De Haas Oscillations in Light-Induced Nanostructured Semiconductors // East European Journal of Physics. 2024. Iss. 1, pp. 485-492.

- 71. M. Dadamirzaev, U. Erkaboev, N. Sharibaev, R. Rakhimov. Simulation the effects of temperature and magnetic field on the density of surface states in semiconductor heterostructures // Iranian Journal of Physics Research. 2024
- 72. U.I. Erkaboev, N.Yu. Sharibaev, M.G. Dadamirzaev, R.G. Rakhimov. Effect of temperature and magnetic field on the density of surface states in semiconductor heterostructures // e-Prime-Advances in Electrical Engineering, Electronics and Energy. 2024. Vol.10, Article ID 100815.
- 73. U.I. Erkaboev, Sh.A. Ruzaliev, R.G. Rakhimov, N.A. Sayidov. Modeling Temperature Dependence of The Combined Density of States in Heterostructures with Quantum Wells Under the Influence of a Quantizing Magnetic Field // East European Journal of Physics. 2024. Iss.3, pp.270-277.
- 74. U.I. Erkaboev, N.Yu. Sharibaev, M.G. Dadamirzaev, R.G. Rakhimov. Modeling influence of temperature and magnetic field on the density of surface states in semiconductor structures // Indian Journal of Physics. 2024.
- 75. U.I. Erkaboev, G. Gulyamov, M. Dadamirzaev, R.G. Rakhimov, J.I. Mirzaev, N.A. Sayidov, U.M. Negmatov. The influence of light on transverse magnetoresistance oscillations in low-dimensional semiconductor structures // Indian Journal of Physics. 2024.
- 76. Р.Г. Рахимов. Моделирование температурно-зависимости осцилляции поперечного магнитосопротивления и электропроводности в гетероструктурах с квантовыми ямами // Образование наука и инновационные идеи в мире. 2024. Vol. 37, Iss. 5, pp.137-152.
- 77. N. Sharibaev, A. Jabborov, R. Rakhimov, Sh. Korabayev, R. Sapayev. A new method for digital processing cardio signals using the wavelet function // BIO Web of Conferences. 2024. Vol. 130, Article ID 04008.
- 78. A.M. Sultanov, E.K. Yusupov, R.G. Rakhimov. Investigation of the Influence of Technological Factors on High-Voltage p⁰–n⁰ Junctions Based on GaAs // Journal of Nano- and Electronic Physics. 2024. Vol. 16, Iss. 2, Article ID 01006.
- 79. U.I. Erkaboev, R.G. Rakhimov, J.I. Mirzaev, N.A. Sayidov, U.M. Negmatov. Influence of temperature and light on magnetoresistance and electrical conductivity oscillations in quantum well heterostructured semiconductors // Romanian Journal of Physics. 2024. Vol. 69, pp.610
- 80. У.И. Эркабоев, Р.Г. Рахимов, Ж.И. Мирзаев, Н.А. Сайидов, У.М. Негматов, С.И. Гайратов. Влияние температуры на осцилляции поперечного магнитосопротивления в низкоразмерных полупроводниковых структурах // Namangan davlat universiteti Ilmiy axborotnomasi. 2023. Iss. 8, pp.40-48.
- 81. U. Erkaboev, N. Sayidov, R. Raximov, U. Negmatov, J. Mirzaev. Kvant o 'rali geterostrukturalarda kombinatsiyalangan holatlar zichligiga magnit maydon va haroratning ta'siri // Namangan davlat universiteti Ilmiy axborotnomasi. 2023. Iss. 6, pp.16-22
- 82. У.И. Эркабоев, Р.Г. Рахимов. Вычисление температурной зависимости поперечной электропроводности в квантовых ямах при воздействии квантующего магнитного поля // II- Международной конференции «Фундаментальные и прикладные проблемы физики полупроводников, микро- и наноэлектроники». Ташкент, 27-28 октября 2023 г. стр.66-68.
- 83. R.G.Rakhimov. Simulation of the temperature dependence of the oscillation of magnetosistivity in nanosized semiconductor structures under the exposure to external fields // Web of Technology: Multidimensional Research Journal. 2024. Vol.2, Iss.11, pp.209-221.