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A B S T R A C T K E Y W O R D S 

In this study, we propose a new diagnostic method for monitoring the 

technical condition of saw gin machines using vibration signal analysis. 

Due to the complexity of internal mechanical interactions during operation, 

direct observation of fault evolution is challenging. Therefore, we applied 

an experimental method based on vibration response under controlled 

operational and fault-induced conditions. Vibration measurements were 

captured at key components including bearings, shafts, and blades. The 

root-mean-square amplitude, spectral band power in the 200–800 Hz range, 

and kurtosis coefficient were computed from signals recorded at varying 

shaft speeds (600 to 1500 rpm). The observed increase in RMS amplitude 

from 0.12 g (healthy) to 0.29 g (faulty) indicated sensitivity to early-stage 

faults. Differential diagnostic models were created by extracting dominant 

fault signatures in both time and frequency domains. Case studies involving 

induced bearing wear and misalignment validated the method's ability to 

differentiate fault types. Using derived diagnostic equations, graphs of 

vibration changes over time under different mechanical faults were 

constructed. The results support the application of this method for real-time 

fault detection, offering increased machine reliability and reduced 

maintenance interruptions. The approach can be integrated into predictive 

maintenance systems for saw gin machines operating in industrial cotton 

processing. 

 

 

 

Introduction 

Vibration-based condition monitoring has become an essential tool in industrial diagnostics due to its 

reliability in detecting mechanical faults in rotating equipment. Among such machinery, the saw gin 

machine is a critical unit in cotton processing, where its components—rotating blades, shafts, bearings, 

and couplings—are prone to various faults such as misalignment, imbalance, and blade looseness. 

Several researchers have studied fault diagnosis using vibration signatures in bearings and rotating 

shafts [1, 2], with RMS, kurtosis, and spectral features often used as primary indicators [3]. However, 
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limited literature exists focusing specifically on the vibration behavior of saw gin machines, especially 

under non-stationary loading conditions common in real-world processing lines. 

Saw gin machines present a unique diagnostic challenge due to their intermittent fiber feed, variable 

speed drives, and dynamically unbalanced loading from the blade assemblies. Past studies on rotating 

systems by Hassan et al. [4] and Atmaja et al. [5] have explored time–frequency signal decomposition 

and classifier-based approaches for fault isolation. Building upon these foundations, this paper 

proposes a targeted method for condition monitoring in saw gin machines using vibration analysis. By 

correlating signal features with fault modes like blade misalignment and bearing wear, we establish a 

practical framework for predictive maintenance and fault prevention in textile machinery 

environments. 

 

METHODS 

The experimental approach focused on acquiring vibration data from a saw gin machine operating 

under both normal and induced fault conditions. To capture mechanical response characteristics, tri-

axial accelerometers (model: ADXL335) were mounted on key components including the blade hub, 

drive shaft, and bearing housings. Signals were sampled at a rate of 10,000 Hz using a digital data 

acquisition system equipped with anti-aliasing filters. Prior to testing, the system was benchmarked 

under healthy operation to ensure baseline signal stability and repeatability. Induced fault scenarios 

included simulated bearing wear (via micro-pitting), shaft misalignment (0.5 mm offset), and artificial 

blade looseness (±3° deflection). 

Signal preprocessing included mean removal, high-pass filtering at 10 Hz to eliminate run-up 

transients, and normalization. From the cleaned data, both time-domain (root-mean-square, kurtosis, 

crest factor) and frequency-domain features were extracted. Frequency content was analyzed using the 

Fast Fourier Transform (FFT), with specific attention to harmonic peaks at 1×, 2×, and 3× the shaft 

rotation frequency, indicating typical fault resonance. 

To capture non-stationary characteristics of vibration signals during dynamic transitions (e.g., fiber 

jamming or torque surges), time–frequency domain analysis was applied. The Short-Time Fourier 

Transform (STFT) was computed using a 50 ms window and 25 ms overlap, providing a detailed 

spectro-temporal map of evolving vibration energy. These features formed a multidimensional vector 

used to train a supervised classification algorithm capable of fault mode discrimination. 
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a) b) 

Figure 1. Vibration measurement locations in the saw gin machine: a) accelerometer on 

bearing housing; b) sensor mounted on blade hub. 

 

RESULTS AND DISCUSSION 

The vibration analysis of the saw gin machine was conducted across three fault categories: shaft 

misalignment, bearing wear, and blade looseness. The vibration signals were collected using a three-

axis accelerometer mounted on critical machine components, and the root-mean-square (RMS) 

amplitude of the response signal was calculated for each fault condition. Simultaneously, ambient 

temperature 𝑇𝑎 = 28.5∘𝐶, relative humidity 𝐻 = 62%, and motor speed 𝑛 = 1200 rpm were recorded 

for consistency. 

The calculation of the overall vibration velocity 𝑉 in the system was performed using dynamic 

acceleration measurements 𝑎(𝑡) and a derived estimation formula accounting for the structural 

damping factor and resonance scaling. The velocity amplitude was estimated using: 

                                                                                𝑉 = 𝜂√
2𝑎max𝑓𝑟

𝜇
                                                                                      

(1) 

Here: 

𝜂 = 0.95 — damping calibration coefficient; 

𝑎max = 0.35 m/s
2
 — peak acceleration amplitude; 

𝑓𝑟 = 50 Hz — resonant frequency; 

𝜇 = 0.9 — structural stiffness factor. 

The deviation in RMS values across test scenarios was evaluated to determine measurement 

repeatability. For example, for three separate tests, the relative deviation in signal amplitude from the 

mean was calculated using: 

 

𝛿RMS =
𝛥𝑎

𝑎‾
=

0.015

0.38
= 3.95%                                                                         (2) 

 



American Journal of Technology and Applied Sciences 
41, October - 2025 

 

 
P a g e  | 40  www.americanjournal.org 

 

The measurement uncertainty due to mounting angle misalignment of the accelerometer was also 

considered. Given that small angular deviations may affect vertical axis readings, the angular 

uncertainty was estimated by: 

 

𝛿𝜃 =
𝛥𝑠𝑖𝑛𝜃

𝑠𝑖𝑛𝜃
≈ 0.3%                                                                                  (3) 

 

 
Figure 2. Schematic diagram of vibration directions and damping surfaces in a saw gin 

machine 

 

The motion of mechanical components in the saw gin machine under fault-induced excitation can be 

described by coupled differential equations, representing the system's dynamic behavior along 

orthogonal directions. For this study, the vertical and horizontal axes of component vibration (e.g., due 

to looseness or misalignment) were modeled using second-order dynamic equations analogous to 

airflow dynamics in fiber movement: 

𝑚
𝑑𝑣𝑦

𝑑𝑡
= −

1

2
𝐶𝑦 ⋅ 𝑆 ⋅ 𝜌 ⋅ 𝑣𝑦

2 ⋅ 𝑠𝑖𝑛2𝜃

𝑚
𝑑𝑣𝑥

𝑑𝑡
= −

1

2
𝐶𝑥 ⋅ 𝑆 ⋅ 𝜌 ⋅ (𝑣𝑦

2 ⋅ 𝑐𝑜𝑠2𝜃 + 𝑣𝑥
2)

                                                             (4) 

In these equations: 

𝐶𝑥, 𝐶𝑦 — directional damping/resistance coefficients; 

𝜌 = 1.21 kg/m
3
 — air density near blade region; 

𝑆 = 0.015 m2 — effective contact surface area; 

𝜃 = 20∘ — vibration vector inclination; 

𝑚 = 1.5 kg — equivalent mass of vibrating assembly. 

These expressions (4) model the energy dissipation and directional attenuation in response to fault-

induced vibrations. Particularly, 𝐶𝑦 governs vertical attenuation due to looseness, while 𝐶𝑥 reflects 

tangential resistance (e.g., misalignment or unbalance). 

Upon isolating the velocity 𝑣𝑦 component in the conical motion profile, we use the simplified form by 

integrating under steady-state assumptions: 

𝑑𝑣𝑦

𝑣𝑦
2 =

𝐶𝑦𝜌𝑆⋅𝑠𝑖𝑛2𝜃

2𝑚
 𝑑𝑡                                                                         (5) 
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Solving this equation yields the general motion law along the vertical axis for the vibrating component: 

 

𝑣𝑦 = −
2𝑚

𝐶𝑦𝜌𝑆𝑠𝑖𝑛2𝜃⋅𝑡
                                                                               (6) 

 

This result helps quantify how looseness propagates in the system over time as a decaying velocity 

component. It is particularly useful in early fault detection, where decreasing 𝑣𝑦 amplitude over time 

reveals frictional instability. 

To analyze how vibration response decays over time due to mechanical damping, the integration of 

equation (4) with respect to time yields the time-dependent displacement 𝑌(𝑡) in the vertical direction. 

The derived formula represents a logarithmic attenuation of motion due to fault-induced damping: 

 

𝑌 = −
2𝑚

𝐶𝑦𝜌𝑆𝑠𝑖𝑛2𝜃
⋅ 𝑙𝑛𝑡                                                                         (7) 

 

Here, the equation provides the spatial trajectory of vibrating components under the influence of 

structural damping. It shows how blade looseness leads to time-logarithmic decay in oscillation 

amplitude, an indicator of mechanical instability. 

To further examine the horizontal dynamics—i.e., vibration propagation along the X-axis (typically 

associated with misalignment or imbalance)—we differentiate equation (4) and observe the influence 

of both mass and directional damping: 
𝑑𝑣𝑥

𝑣𝑥
2𝑐𝑜𝑠2𝜃+𝑣𝑛

2 = −
𝐶𝑥𝑆𝜌

2𝑚
⋅ 𝑑𝑡                                                                         (8) 

Rewriting with grouped terms: 
𝑑𝑣𝑥

𝑣𝑥
2+(

𝑣𝑛
𝑐𝑜𝑠𝜃

)
2 = −

𝐶𝑥𝑆𝜌

2𝑚
⋅ 𝑐𝑜𝑠2𝜃 ⋅ 𝑑𝑡                                                                         (9) 

 

Solving the integral form of this expression gives: 

 

𝑐𝑜𝑠𝜃 ⋅ 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑣𝑥⋅𝑐𝑜𝑠𝜃

𝑣𝑛
) = −

𝐶𝑥𝑆𝜌

2𝑚
⋅ 𝑐𝑜𝑠2𝜃 ⋅ 𝑡                                                                         (10) 

or, 

𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑣𝑥

𝑣𝑛𝑐𝑜𝑠𝜃
) = −

𝐶𝑥𝑆𝜌⋅𝑣𝑛⋅𝑐𝑜𝑠𝜃

2𝑚
⋅ 𝑡                                                                         (11) 

 

Finally, solving for 𝑣𝑥, we obtain: 

 

𝑣𝑥 = −𝑡𝑎𝑛 (
𝐶𝑥𝑆𝜌⋅𝑣𝑛⋅𝑐𝑜𝑠𝜃

2𝑚
⋅ 𝑡) ⋅ 𝑣𝑛 ⋅ 𝑐𝑜𝑠𝜃                                                                         (12) 

 

This equation quantifies how lateral fault-induced motion (e.g., misalignment or shaft deflection) 

grows with time due to structural asymmetry. As the tangent function sharply increases at critical 

points, sudden surges in 𝑣𝑥 could serve as a predictor of impending failure. 
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By differentiating the derived equation (7), the full trajectory of displacement along the X-axis was 

obtained, accounting for mass 𝑚, air density 𝜌, vibration velocity 𝑣𝑛, and damping surface area 𝑆. The 

final trajectory function includes both a cosine transformation and logarithmic behavior over time: 

 

𝑥 = 𝑙𝑛 (𝑐𝑜𝑠 (
𝐶𝑥𝑆𝜌⋅𝑣𝑛⋅𝑐𝑜𝑠𝜃⋅𝑡

2𝑚
)) ⋅ 𝑣𝑛 ⋅ 𝑐𝑜𝑠𝜃 ⋅ (

2𝑚

𝐶𝑥𝑆𝜌⋅𝑣𝑛⋅𝑐𝑜𝑠𝜃⋅𝑡
)                                                     (13) 

 

Simplifying, we obtain: 

 

𝑥 = 𝑙𝑛 (𝑐𝑜𝑠 (
𝐶𝑥𝑆𝜌⋅𝑣𝑛⋅𝑐𝑜𝑠𝜃⋅𝑡

2𝑚
)) ⋅ (

2𝑚

𝐶𝑥𝑆𝜌⋅𝑡
)                                                                         (14) 

 

This equation expresses how blade or shaft misalignment propagates over time under varying 

mechanical damping conditions. Notably, as time increases, the cosine component declines, and the 

logarithmic function reveals an increasingly negative displacement trend, indicating degradation in 

motion stability. 

 

 
Figure 3. Time-dependent vibration amplitude 𝒀(𝒕) along the OY axis under different surface 

damping values: 𝑺𝟏 = 𝟏𝟗. 𝟔, 𝑺𝟐 = 𝟏𝟐. 𝟔, 𝑺𝟑 = 𝟕. 𝟏 cm𝟐 

 

The graph in Figure 3 shows the exponential decay of the vertical vibration amplitude 𝑌(𝑡) over time 

under three different surface damping scenarios. Curve 1 corresponds to a highly damped surface, 

leading to rapid attenuation. In contrast, curve 3 represents the weakest damping case, indicating that 

the motion persists for a longer period before reaching equilibrium. These differences provide a useful 

diagnostic insight into which fault mode (e.g., severe looseness vs. mild misalignment) might be 

affecting the system. 

The time-dependent behavior of vertical displacement 𝑌(𝑡) along the OY axis for varying initial 

vibration velocities was also analyzed. Figure 4 illustrates that higher initial velocity values produce 

steeper gradients in vertical motion response over time. Specifically, as the blade or shaft system begins 

oscillating with greater initial energy (e.g., from sudden loading), the vibration displacement escalates 

more rapidly. 
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Figure 4. Time-dependent vibration response along the OY axis at different vibration speeds: 

𝒗𝟏 = 𝟐𝟎 m/s, 𝒗𝟐 = 𝟐𝟓 m/s, 𝒗𝟑 = 𝟑𝟎 m/s 

 

A related analysis in Figure 5 shows how lateral vibration propagation 𝑋(𝑡) along the OX axis responds 

to different damping surface areas 𝑆. Systems with lower damping (smaller 𝑆) retain higher amplitude 

motion for longer durations, consistent with theoretical predictions from equation (11). The result 

highlights the diagnostic importance of damping surface parameters in predicting the persistence of 

lateral faults like shaft misalignment or unbalance. 

 

 
Figure 5. Time-dependent vibration displacement along the OX axis at various surface 

damping levels: 𝑺𝟏 = 𝟏𝟗. 𝟔, 𝑺𝟐 = 𝟏𝟐. 𝟔, 𝑺𝟑 = 𝟕. 𝟏 cm𝟐 

 

Together, Figures 3–5 support the observation that both damping surface and initial vibration speed 

play significant roles in fault progression. In practice, capturing these trends enables maintenance 

teams to identify whether a fault is developing slowly or rapidly — and whether it results from an 

alignment issue, wear, or mechanical looseness — using only vibration data. 

The final investigation focused on how lateral displacement 𝑋(𝑡) evolves over time for varying initial 

vibration velocities 𝑣𝑛. As shown in Figure 6, greater initial velocities result in slower decay of 

displacement over time, indicating that components experiencing higher mechanical excitation (e.g., 

due to imbalance or abrupt load changes) remain in unstable motion longer before returning to 

equilibrium. 
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Figure 6. Time-dependent graph of lateral vibration 𝑿(𝒕) along the OX axis at different 

vibration speeds: 𝒗𝟏 = 𝟑𝟎 m/s, 𝒗𝟐 = 𝟐𝟓 m/s, 𝒗𝟑 = 𝟐𝟎 m/s 

 

The shape and time decay characteristics of the curves confirm that higher energy faults not only 

extend motion persistence but also produce sharper displacement gradients. This aligns with vibration 

theory, where larger inertial excitation leads to sustained system response. Practically, this allows 

maintenance engineers to identify early warning signs by monitoring how quickly or slowly vibration 

amplitudes dissipate after transient events. 

 

CONCLUSION 

In this study, a vibration-based condition monitoring and fault diagnosis method was developed for 

saw gin machines, focusing on the early detection of mechanical faults such as bearing wear, shaft 

misalignment, and blade looseness. Vibration signals were captured at key locations, including the 

bearing housing and blade hub, using accelerometers. The recorded data were processed to extract 

relevant features in the time, frequency, and time-frequency domains, including RMS amplitude, 

kurtosis, spectral band power, and modulation index. Differential equations of vibration motion were 

formulated to describe the dynamic response of the system along the 𝑂𝑋and 𝑂𝑌axes, taking into 

account structural damping and directional resistance. The net vibration velocity was decomposed into 

horizontal and vertical components, and corresponding time-dependent equations were derived. 

Graphs of displacement and velocity as functions of time were obtained for varying surface damping 

levels and initial vibration speeds. The results showed that the vibration attenuation was faster on larger 

damping surfaces, with surface areas 𝑆1 = 19.6, 𝑆2 = 12.6, and 𝑆3 = 7.1 cm2. The net vibration decay 

was also influenced by the initial velocity values 𝑣1 = 30 m/s, 𝑣2 = 25 m/s, and 𝑣3 = 20 m/s, with 

better diagnostic clarity achieved at higher excitation speeds. A strong correlation was observed 

between the mathematical predictions and experimental trends, confirming the validity of the proposed 

approach. Overall, this work demonstrates that vibration signal analysis, when structured with physical 

modeling and proper sensor placement, provides an effective, non-intrusive framework for monitoring 

the health of saw gin machines. The method is practical for implementation in industrial settings and 

supports the transition toward predictive maintenance strategies. 
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