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The article presents a comparative analysis of the efficiency of 

microservice and monolithic architectures under high load conditions. 

The main focus is on such parameters as scalability, performance, fault 

tolerance, and infrastructure costs. The results show that microservice 

architecture provides higher stability and scalability under intensive 

loads, but its use is associated with increased operating costs and 

increased infrastructure complexity. At the same time, monolithic 

architecture demonstrates better performance under moderate load and 

is characterized by lower maintenance costs. 
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Introduction 

The scientific novelty of the article lies in identifying the hidden overhead costs of microservice 

architecture (Service Mesh, tracing, multi-cloud scenarios) and comparative assessment of its 

effectiveness compared to a monolithic approach under high load conditions, which allows us to 

propose reasonable criteria for choosing an architecture for scalable systems. 

Optimization of software system architecture in the context of rapid growth of data volumes and 

computational requirements is one of the key tasks of modern software engineering. According to 

forecasts of analytical agencies, by 2030 the number of connected IoT devices will reach 29 billion, 

which will entail a significant increase in the load on the server infrastructure [1]. In this context, the 

choice of an architectural model acquires strategic importance for ensuring the scalability and 

reliability of information systems. 

Traditional monolithic architecture, characterized by tight integration of all components, demonstrates 

efficiency at the initial stages of development and under moderate loads. However, its disadvantages 

become obvious when frequent updates and horizontal scaling are required. In contrast, microservice 

architecture involves decomposing the system into independent, loosely coupled services, which helps 

to increase fault tolerance and flexibility [2]. 

Practical experience of leading IT companies, including Netflix and Amazon , confirms the feasibility 

of moving to microservices to ensure stable operation under extreme loads [3]. At the same time, the 

implementation of microservice architecture is associated with the need to deploy a complex 
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infrastructure, including containerization systems (e.g., Docker) and orchestration (e.g., Kubernetes), 

which can lead to increased operating costs. 

Thus, a comparative analysis of the two architectural approaches has significant practical significance. 

The choice between a monolithic and microservice architecture should be determined not only by 

current performance requirements, but also by long-term project development goals, taking into 

account potential load growth and the need to make changes. 

The modern landscape of high-load cloud systems is defined by the dominance of microservice 

architecture (MSA) and cloud- native technologies. According to the annual report of the organization 

«Cloud Native Computing Foundation» for 2023, the Kubernetes container orchestration platform is 

used in production by most organizations, with the combined share of users and those actively 

evaluating the platform exceeding 80% (84% in the report sample) [4]. This indicates that the 

microservices ecosystem (containers, service meshes, DevOps practices) has become the de facto 

standard for building scalable systems. 

An analysis of scientific research shows that the effectiveness of MSA and monolithic architecture 

depends on the load profile and the nature of intercomponent interactions. Early empirical studies 

(Applied Sciences, MDPI) demonstrate differences in latency and throughput between a monolith and 

microservices on a reference web application [5]. More recent work confirms that under low and 

medium loads, a monolith often exhibits better latency due to the absence of network delays. At the 

same time, microservices scale more reliably with traffic growth, especially when using asynchronous 

communications. 

Using service meshes simplifies the implementation of non-functional requirements (mTLS security, 

retries, load balancing), but also adds overhead. A large experimental setup (SoCC 2023) recorded an 

increase in latency of up to +269% and an increase in vCPU resource consumption of up to +163% in 

the worst-case configurations; the effect depends on the protocols and proxy settings [6]. The latest 

benchmark reports (2024–2025) also confirm that additional proxy nodes on average increase latency 

by milliseconds per hop, and the choice of mesh model (sidecar, ambient, eBPF) significantly affects 

the resulting latency [7]. Additionally, it was shown that the distributed tracing tools required for 

observability in MSA themselves create measurable overhead that must be taken into account when 

planning Service Level Agreements [8]. 

The quality of interservice communications and the choice of data consistency patterns have a decisive 

influence on the «tail» of the latency distribution. With identical average latency, microservice graphs 

with long critical paths tend to increase p95/p99 (the «tail latency» effect), which is noted in 

engineering studies [9]. To minimize this effect, Circuit patterns are used Breaker, Bulkhead, Saga / 

Outbox, as well as idempotency and deduplication mechanisms. 

In domains with strict latency requirements (e.g., IoT, edge analytics), microservices provide benefits 

in elasticity and independent evolution of components, but remain sensitive to network variability. A 

systematic review of MSA in IoT systematizes the security and scalability benefits, while emphasizing 

the overhead of inter-service communications and monitoring [10]. To place services closer to the load 

source, latency-aware scheduling and fault-tolerance strategies in hybrid cloud-edge topologies are 

considered, which improves response stability in the face of network disturbances. 

The decision to migrate from a monolith to microservices should be based on the maturity of DevOps 

processes, consistency requirements, load profile, observability cost, and team competence [11]. 
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Experience from large companies (Uber, Netflix) shows that at scales of thousands of services, the 

cost of cognitive and operational complexity increases. This leads to the evolution of architecture 

towards domain-oriented «platforms» and unifying layers (e.g. DOMA at Uber, GraphQL federation 

at Netflix) to reduce this complexity. 

To conduct a comparative analysis of the efficiency of monolithic and microservice architectures under 

high load conditions, a methodology based on experimental modeling and analysis of key metrics was 

developed. Two architectural models were chosen as objects of study: 

- a monolithic application implemented as a single executable module with centralized business logic 

and a common database; 

- a microservice system consisting of a set of autonomous services that interact using REST APIs and 

asynchronous queues (e.g. RabbitMQ, Kafka). The system was deployed in Docker containers using 

orchestration Kubernetes for management. 

The comparison was carried out based on four key performance indicators: 

1. Scalability is the ability of the system to support increased load without reducing performance. 

2. Performance was measured by average response time and the number of processed requests per 

second (RPS, TPS). 

3. Stability (fault tolerance) was assessed based on the system’s behavior when one or more 

components fail. 

4. Infrastructure costs were determined based on the volume of consumed computing resources (CPU, 

RAM) and the complexity of DevOps processes. 

As part of the experimental part of the study, a test load was generated using JMeter and k6 tools, the 

intensity of which gradually increased from 1,000 to 20,000 requests per second. The monolithic 

application was subjected to vertical scaling (increasing server resources), while the microservice 

system used horizontal scaling (adding new service instances) in a Kubernetes cluster . To assess fault 

tolerance, failures were artificially simulated: individual services in the microservice architecture and 

critical modules in the monolithic were disabled. Infrastructure costs were assessed based on 

monitoring the consumed resources and analyzing the complexity of maintaining each of the systems. 

 

Table 1 - Comparison criteria for monolithic and microservice architectures 

Criterion Monolithic architecture Microservice architecture 

Scalability Vertical , limited to resources of 

one node 

Horizontal, linear scaling 

Performance Low latency at low load, 

degradation at RPS growth > 

10,000 

Increased latency due to network calls, but consistent 

performance as load increases 

Sustainability Failure of a critical module can 

paralyze the system 

Localizing the failure, maintaining the operation of 

other services 

Infrastructure Simple configuration, minimal 

DevOps Costs 

Requires containerization, orchestration , service 

meshes 

Cost Below in the deployment and 

support phase 

Higher through infrastructure and team competence 
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Thus, the research methodology involves a comprehensive assessment of not only performance 

metrics, but also reliability factors and operating costs, which allows us to form an objective idea of 

the applicability of architectural approaches under high load conditions.  

The conducted experimental modeling revealed significant differences in the behavior of monolithic 

and microservice architectures under high load. The results of the analysis are presented by key 

indicators. 

1. Scalability. The monolithic system demonstrated stable operation up to a threshold of ~5,000 

requests per second (RPS), after which obvious performance degradation was observed. Scaling of 

such a system is limited by a vertical approach, which depends on the physical characteristics of the 

server. The microservice architecture demonstrated the ability to scale horizontally, which allowed the 

system to maintain an acceptable response time even with a load increase of up to 20,000 RPS, despite 

the increasing costs of interservice interaction. 

2. Performance. At low load (up to 2000 RPS), the monolith provided a lower average response time 

(25-30 ms) due to the absence of network calls. In microservices, this figure was higher (35-40 ms) 

due to additional network hops. However, at loads above 10,000 RPS, the monolithic system faced a 

sharp increase in latency (up to 120-150 ms), while microservices demonstrated a smoother increase 

in latency (up to 80-90 ms) while maintaining stable throughput. 

3. Resilience (fault tolerance). Simulation of failures showed that the failure of a critical component in 

a monolith leads to a complete system shutdown. In a microservice architecture, the failure of one 

service caused only partial degradation of functionality, while other components continued to function. 

4. Infrastructure costs. The monolithic system required fewer resources and was easier to maintain, 

making it cost-effective for systems with average load. Microservice architecture, on the contrary, 

comes with additional costs for containerization, orchestration (Kubernetes), load balancing, and 

monitoring. These costs, however, are offset by high flexibility and reliability under extreme loads. 

 

Table 2 - Comparison of test results 

Indicator / Criterion   
 

Monolithic architecture Microservice architecture 

Average response time (up to 

2000 RPS 

25–30 ms 35–40 ms 

Average response time (10,000+ 

RPS) 

120–150 ms 80–90 ms 

Maximum stable load ~5000 RPS 20,000+ RPS 

Behavior upon failure Failure of a critical module 

paralyzes the system 

The failure of a single service does 

not stop the entire system 

Infrastructure costs Low , simple support High, requires DevOps and 

orchestration 

Flexibility of updates Limited , release affects the entire 

application 

High , updates are isolated by 

services 

 

The conducted research allows us to conclude that the choice of architectural approach should be based 

on a thorough analysis of the load profile, requirements for fault tolerance and the resource base of the 

project. Monolithic architecture is optimal for applications with moderate load, where the priority 

factors are ease of development, low operating costs and fast time to market. However, under high 
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load conditions, its scalability and fault tolerance are limited. Microservice architecture has proven its 

effectiveness for high - load systems, as it allows processing significant volumes of requests due to 

horizontal scaling and localization of failures. However, its implementation is associated with 

increased overhead costs for network interactions and more complex infrastructure. 

Thus, for systems with an average load, it is most appropriate to use a monolithic architecture, while 

for projects that require high scalability and reliability under peak loads, a microservice approach is 

preferable . 

Therefore, the choice of architectural approach should be determined by the nature of the load, fault 

tolerance requirements and the organization's available resources. For systems designed for intensive 

traffic, a large number of users and constant development, the optimal solution is a microservice 

architecture. For applications with a moderate load, limited budget and simpler functional 

requirements, it is advisable to use a monolith. 
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