

American Journal of Technology and Applied Sciences
ISSN (E): 2832-1766 Volume 40, September - 2025

P a g e | 1 www.americanjournal.org

COMPARATIVE ANALYSIS OF THE EFFICIENCY OF

MICROSERVICE AND MONOLITHIC ARCHITECTURES UNDER

HIGH LOAD CONDITIONS

Michael Gevorgyan

 IT Specialist, Armenia

A B S T R A C T K E Y W O R D S

The article presents a comparative analysis of the efficiency of

microservice and monolithic architectures under high load conditions.

The main focus is on such parameters as scalability, performance, fault

tolerance, and infrastructure costs. The results show that microservice

architecture provides higher stability and scalability under intensive

loads, but its use is associated with increased operating costs and

increased infrastructure complexity. At the same time, monolithic

architecture demonstrates better performance under moderate load and

is characterized by lower maintenance costs.

Microservices,

monolithic architecture,

high load, scalability,

performance, fault

tolerance, DevOps,

hybrid architectures.

Introduction

The scientific novelty of the article lies in identifying the hidden overhead costs of microservice

architecture (Service Mesh, tracing, multi-cloud scenarios) and comparative assessment of its

effectiveness compared to a monolithic approach under high load conditions, which allows us to

propose reasonable criteria for choosing an architecture for scalable systems.

Optimization of software system architecture in the context of rapid growth of data volumes and

computational requirements is one of the key tasks of modern software engineering. According to

forecasts of analytical agencies, by 2030 the number of connected IoT devices will reach 29 billion,

which will entail a significant increase in the load on the server infrastructure [1]. In this context, the

choice of an architectural model acquires strategic importance for ensuring the scalability and

reliability of information systems.

Traditional monolithic architecture, characterized by tight integration of all components, demonstrates

efficiency at the initial stages of development and under moderate loads. However, its disadvantages

become obvious when frequent updates and horizontal scaling are required. In contrast, microservice

architecture involves decomposing the system into independent, loosely coupled services, which helps

to increase fault tolerance and flexibility [2].

Practical experience of leading IT companies, including Netflix and Amazon , confirms the feasibility

of moving to microservices to ensure stable operation under extreme loads [3]. At the same time, the

implementation of microservice architecture is associated with the need to deploy a complex

American Journal of Technology and Applied Sciences
40, September - 2025

P a g e | 2 www.americanjournal.org

infrastructure, including containerization systems (e.g., Docker) and orchestration (e.g., Kubernetes),

which can lead to increased operating costs.

Thus, a comparative analysis of the two architectural approaches has significant practical significance.

The choice between a monolithic and microservice architecture should be determined not only by

current performance requirements, but also by long-term project development goals, taking into

account potential load growth and the need to make changes.

The modern landscape of high-load cloud systems is defined by the dominance of microservice

architecture (MSA) and cloud- native technologies. According to the annual report of the organization

«Cloud Native Computing Foundation» for 2023, the Kubernetes container orchestration platform is

used in production by most organizations, with the combined share of users and those actively

evaluating the platform exceeding 80% (84% in the report sample) [4]. This indicates that the

microservices ecosystem (containers, service meshes, DevOps practices) has become the de facto

standard for building scalable systems.

An analysis of scientific research shows that the effectiveness of MSA and monolithic architecture

depends on the load profile and the nature of intercomponent interactions. Early empirical studies

(Applied Sciences, MDPI) demonstrate differences in latency and throughput between a monolith and

microservices on a reference web application [5]. More recent work confirms that under low and

medium loads, a monolith often exhibits better latency due to the absence of network delays. At the

same time, microservices scale more reliably with traffic growth, especially when using asynchronous

communications.

Using service meshes simplifies the implementation of non-functional requirements (mTLS security,

retries, load balancing), but also adds overhead. A large experimental setup (SoCC 2023) recorded an

increase in latency of up to +269% and an increase in vCPU resource consumption of up to +163% in

the worst-case configurations; the effect depends on the protocols and proxy settings [6]. The latest

benchmark reports (2024–2025) also confirm that additional proxy nodes on average increase latency

by milliseconds per hop, and the choice of mesh model (sidecar, ambient, eBPF) significantly affects

the resulting latency [7]. Additionally, it was shown that the distributed tracing tools required for

observability in MSA themselves create measurable overhead that must be taken into account when

planning Service Level Agreements [8].

The quality of interservice communications and the choice of data consistency patterns have a decisive

influence on the «tail» of the latency distribution. With identical average latency, microservice graphs

with long critical paths tend to increase p95/p99 (the «tail latency» effect), which is noted in

engineering studies [9]. To minimize this effect, Circuit patterns are used Breaker, Bulkhead, Saga /

Outbox, as well as idempotency and deduplication mechanisms.

In domains with strict latency requirements (e.g., IoT, edge analytics), microservices provide benefits

in elasticity and independent evolution of components, but remain sensitive to network variability. A

systematic review of MSA in IoT systematizes the security and scalability benefits, while emphasizing

the overhead of inter-service communications and monitoring [10]. To place services closer to the load

source, latency-aware scheduling and fault-tolerance strategies in hybrid cloud-edge topologies are

considered, which improves response stability in the face of network disturbances.

The decision to migrate from a monolith to microservices should be based on the maturity of DevOps

processes, consistency requirements, load profile, observability cost, and team competence [11].

American Journal of Technology and Applied Sciences
40, September - 2025

P a g e | 3 www.americanjournal.org

Experience from large companies (Uber, Netflix) shows that at scales of thousands of services, the

cost of cognitive and operational complexity increases. This leads to the evolution of architecture

towards domain-oriented «platforms» and unifying layers (e.g. DOMA at Uber, GraphQL federation

at Netflix) to reduce this complexity.

To conduct a comparative analysis of the efficiency of monolithic and microservice architectures under

high load conditions, a methodology based on experimental modeling and analysis of key metrics was

developed. Two architectural models were chosen as objects of study:

- a monolithic application implemented as a single executable module with centralized business logic

and a common database;

- a microservice system consisting of a set of autonomous services that interact using REST APIs and

asynchronous queues (e.g. RabbitMQ, Kafka). The system was deployed in Docker containers using

orchestration Kubernetes for management.

The comparison was carried out based on four key performance indicators:

1. Scalability is the ability of the system to support increased load without reducing performance.

2. Performance was measured by average response time and the number of processed requests per

second (RPS, TPS).

3. Stability (fault tolerance) was assessed based on the system’s behavior when one or more

components fail.

4. Infrastructure costs were determined based on the volume of consumed computing resources (CPU,

RAM) and the complexity of DevOps processes.

As part of the experimental part of the study, a test load was generated using JMeter and k6 tools, the

intensity of which gradually increased from 1,000 to 20,000 requests per second. The monolithic

application was subjected to vertical scaling (increasing server resources), while the microservice

system used horizontal scaling (adding new service instances) in a Kubernetes cluster . To assess fault

tolerance, failures were artificially simulated: individual services in the microservice architecture and

critical modules in the monolithic were disabled. Infrastructure costs were assessed based on

monitoring the consumed resources and analyzing the complexity of maintaining each of the systems.

Table 1 - Comparison criteria for monolithic and microservice architectures

Criterion Monolithic architecture Microservice architecture

Scalability Vertical , limited to resources of

one node

Horizontal, linear scaling

Performance Low latency at low load,

degradation at RPS growth >

10,000

Increased latency due to network calls, but consistent

performance as load increases

Sustainability Failure of a critical module can

paralyze the system

Localizing the failure, maintaining the operation of

other services

Infrastructure Simple configuration, minimal

DevOps Costs

Requires containerization, orchestration , service

meshes

Cost Below in the deployment and

support phase

Higher through infrastructure and team competence

American Journal of Technology and Applied Sciences
40, September - 2025

P a g e | 4 www.americanjournal.org

Thus, the research methodology involves a comprehensive assessment of not only performance

metrics, but also reliability factors and operating costs, which allows us to form an objective idea of

the applicability of architectural approaches under high load conditions.

The conducted experimental modeling revealed significant differences in the behavior of monolithic

and microservice architectures under high load. The results of the analysis are presented by key

indicators.

1. Scalability. The monolithic system demonstrated stable operation up to a threshold of ~5,000

requests per second (RPS), after which obvious performance degradation was observed. Scaling of

such a system is limited by a vertical approach, which depends on the physical characteristics of the

server. The microservice architecture demonstrated the ability to scale horizontally, which allowed the

system to maintain an acceptable response time even with a load increase of up to 20,000 RPS, despite

the increasing costs of interservice interaction.

2. Performance. At low load (up to 2000 RPS), the monolith provided a lower average response time

(25-30 ms) due to the absence of network calls. In microservices, this figure was higher (35-40 ms)

due to additional network hops. However, at loads above 10,000 RPS, the monolithic system faced a

sharp increase in latency (up to 120-150 ms), while microservices demonstrated a smoother increase

in latency (up to 80-90 ms) while maintaining stable throughput.

3. Resilience (fault tolerance). Simulation of failures showed that the failure of a critical component in

a monolith leads to a complete system shutdown. In a microservice architecture, the failure of one

service caused only partial degradation of functionality, while other components continued to function.

4. Infrastructure costs. The monolithic system required fewer resources and was easier to maintain,

making it cost-effective for systems with average load. Microservice architecture, on the contrary,

comes with additional costs for containerization, orchestration (Kubernetes), load balancing, and

monitoring. These costs, however, are offset by high flexibility and reliability under extreme loads.

Table 2 - Comparison of test results

Indicator / Criterion

Monolithic architecture Microservice architecture

Average response time (up to

2000 RPS

25–30 ms 35–40 ms

Average response time (10,000+

RPS)

120–150 ms 80–90 ms

Maximum stable load ~5000 RPS 20,000+ RPS

Behavior upon failure Failure of a critical module

paralyzes the system

The failure of a single service does

not stop the entire system

Infrastructure costs Low , simple support High, requires DevOps and

orchestration

Flexibility of updates Limited , release affects the entire

application

High , updates are isolated by

services

The conducted research allows us to conclude that the choice of architectural approach should be based

on a thorough analysis of the load profile, requirements for fault tolerance and the resource base of the

project. Monolithic architecture is optimal for applications with moderate load, where the priority

factors are ease of development, low operating costs and fast time to market. However, under high

American Journal of Technology and Applied Sciences
40, September - 2025

P a g e | 5 www.americanjournal.org

load conditions, its scalability and fault tolerance are limited. Microservice architecture has proven its

effectiveness for high - load systems, as it allows processing significant volumes of requests due to

horizontal scaling and localization of failures. However, its implementation is associated with

increased overhead costs for network interactions and more complex infrastructure.

Thus, for systems with an average load, it is most appropriate to use a monolithic architecture, while

for projects that require high scalability and reliability under peak loads, a microservice approach is

preferable .

Therefore, the choice of architectural approach should be determined by the nature of the load, fault

tolerance requirements and the organization's available resources. For systems designed for intensive

traffic, a large number of users and constant development, the optimal solution is a microservice

architecture. For applications with a moderate load, limited budget and simpler functional

requirements, it is advisable to use a monolith.

References

1. Statista . Number of Internet of Things (IoT) connected worldwide devices from 2019 to 2030 [

Electronic resource]. – Mode access : https://www.statista.com/statistics/1183457/iot-connected-

devices-worldwide (date accessed : 22.08.2025).

2. Newman S. Building Microservices . – 2nd ed. – Beijing: O'Reilly Media, 2021. – 445 p.

3. Fowler M., Lewis J. Microservices : a definition of this new architectural term [Electronic resource

]. – Mode access : https://martinfowler.com/articles/microservices.html (date accessed : 21.08.2025).

4. Cloud Native Computing Foundation. CNCF Annual Survey 2023 [Electronic resource]. – Mode

access : https://www.cncf.io/reports/cncf-annual-survey-2023/ (date accessed : 23.08.2025).

5. Rahman A., Mustafa R., Prehofer C., Ahmad A. From Monolithic Systems to Microservices : A

Comparative Study of Performance // Applied Sciences. – 2020. – Vol. 10, No. 17. – Art. 5797. – DOI:

10.3390/app10175797. - Mode access : https://www.mdpi.com/2076-3417/10/17/5797 (date accessed

: 20.08.2025).

6. Lentz M., Greenberg M., Kim H., Panda A., Vahdat A. Dissecting Overheads of Service Mesh

Sidecars // Proceedings of SoCC 2023. - ACM, 2023. - DOI: 10.1145/3620678.3624652. - Mode

access : https://dl.acm.org/doi/10.1145/3620678.3624652 (date accessed : 23.08.2025).

7. Deepness Lab. Performance Comparison of Service Mesh Frameworks: the mTLS Tax (Project

Report) [Electronic resource]. – 2024. – Mode access : https://deepness-lab.org/wp-

content/uploads/2024/05/Service_Mesh_Performance_Project_Report.pdf (date accessed :

24.08.2025).

8. Anders M. Investigating Performance Overhead of Distributed Tracing in Microservices and

Serverless (Master's thesis) [Electronic resource]. – 2025. – Mode access : https://atlarge-

research.com/pdfs/2024-msc-anders_tracing_overhead.pdf (date accessed : 08/25/2025).

9. HotNets'24. Opportunities and Challenges in Service Layer Traffic Engineering (prototype

experiments) [Electronic resource]. – 2024. – Mode access :

https://conferences.sigcomm.org/hotnets/2024/papers/hotnets24-107.pdf (date accessed :

08/25/2025).

https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide?utm_source=chatgpt.com
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide?utm_source=chatgpt.com
https://martinfowler.com/articles/microservices.html?utm_source=chatgpt.com
https://www.cncf.io/reports/cncf-annual-survey-2023/?utm_source=chatgpt.com
https://www.mdpi.com/2076-3417/10/17/5797?utm_source=chatgpt.com
https://dl.acm.org/doi/10.1145/3620678.3624652?utm_source=chatgpt.com
https://deepness-lab.org/wp-content/uploads/2024/05/Service_Mesh_Performance_Project_Report.pdf?utm_source=chatgpt.com
https://deepness-lab.org/wp-content/uploads/2024/05/Service_Mesh_Performance_Project_Report.pdf?utm_source=chatgpt.com
https://atlarge-research.com/pdfs/2024-msc-anders_tracing_overhead.pdf?utm_source=chatgpt.com
https://atlarge-research.com/pdfs/2024-msc-anders_tracing_overhead.pdf?utm_source=chatgpt.com
https://conferences.sigcomm.org/hotnets/2024/papers/hotnets24-107.pdf?utm_source=chatgpt.com

American Journal of Technology and Applied Sciences
40, September - 2025

P a g e | 6 www.americanjournal.org

10. Ortega D., López D., Gomes C., Silva F. Microservices in IoT : A Systematic Review 2010–2024

// Sensors. – 2024. – Vol. 24, No. 20. – Art. 6771. – Mode access : https://www.mdpi.com/1424-

8220/24/20/6771 (date accessed : 08/26/2025).

11. Fritzsch J., Bogner J., Wagner S. From Monolithic Systems to Microservices : An Assessment

Framework // Information and Software Technology. – 2021. – Vol. 128. – Art. 106378. – Mode access

: https://www.sciencedirect.com/science/article/pii/S0950584921000793 (date accessed :

08/27/2025).

https://www.mdpi.com/1424-8220/24/20/6771?utm_source=chatgpt.com
https://www.mdpi.com/1424-8220/24/20/6771?utm_source=chatgpt.com
https://www.sciencedirect.com/science/article/pii/S0950584921000793?utm_source=chatgpt.com

