

ISSN (E): 2832-8019 Volume 25, | June - 2024

TRIGONOMETRIC EQUATIONS

Abdullayev Nurbek Shukhrat ogli Yoldoshev Bekmirza Shukhrat ogli Matkurbanov Ganjaboy Botir ogli

A B S T R A C T KEYWORDS

Trigonometric equations are mathematical expressions involving trigonometric functions like sine, cosine, and tangent. This book provides a comprehensive overview of trigonometric equations, covering various solution techniques and applications in mathematics and other disciplines. It offers clear explanations, examples, and exercises to help readers understand and master the concepts of solving trigonometric equations.

Trigonometric equations, trigonometric functions, sine, cosine, tangent, inverse trigonometric functions, identities, solutions, applications, graphical methods.

Introduction

A trigonometric equation is an equation that involves one or more trigonometric functions, such as sine, cosine, tangent, cotangent, secant, or cosecant. These equations can be solved for the variable, often representing an angle, within a specified domain. Here are a few examples:

- 1. Basic Trigonometric Equations:
 - $(\sin(x) = 0.5)$
 - $(\cos(x) = \frac{3}{2})$
 - $(\tan(x) = 1)$
- 2. Equations Involving Multiple Trigonometric Functions:
 - $\setminus (\sin(x) + \cos(x) = 1 \setminus)$
 - $(\tan(x) \cdot \cot(x) = 1)$
- 3. Equations with Squared Functions:
 - $(\sin^2(x) + \cos^2(x) = 1)$
 - $(\sec^2(x) \tan^2(x) = 1)$
- 4. Equations Involving Multiple Angles:
 - $\setminus (\sin(2x) = \cos(x) \setminus)$
 - $(\cos(3x) = \frac{1}{2})$
- 5. Complex Trigonometric Equations:
 - $(\sin(x) \cos(x) = \frac{1}{4}$
 - $(\cos^2(x) 3 \sin(x) = 2)$

These equations are solved by using various methods, such as:

Volume 25 June - 2024

- Using Trigonometric Identities: Simplifying the equation using identities like $\(\sin^2(x) + \cos^2(x)\)$
- = $1\)$ or $(\tan(x) = \frac{\sin(x)}{\cos(x)}\)$.
- Inverse Trigonometric Functions: Applying the inverse functions to isolate the variable (e.g., $(x = \arcsin(0.5))$).
- Graphical Methods: Visualizing the functions on a graph to find the points of intersection.
- Algebraic Manipulation: Rearranging the equation and solving for the variable using algebraic techniques.

The goal is to find all possible solutions within the given domain, often considering the periodic nature of trigonometric functions.

Sure, let's delve deeper into trigonometric equations, their solutions, and methods for solving them. Types of Trigonometric Equations

1. Linear Trigonometric Equations:

These are equations where the trigonometric function appears linearly.

- Example: $\langle \sin(x) = 0.5 \rangle$
- 2. Quadratic Trigonometric Equations:

These involve the square of a trigonometric function.

- Example: $(2\cos^2(x) 3\cos(x) + 1 = 0)$
- 3. Multiple Angle Equations:

These involve trigonometric functions of multiple angles.

- Example: $\langle \sin(2x) = \cos(x) \rangle$
- 4. Sum and Difference Equations:

These involve sums or differences of trigonometric functions.

- Example: $\(\sin(x) + \cos(x) = \frac{2}{2}\)$

Solving Trigonometric Equations

1. Using Identities:

Trigonometric identities can simplify complex equations.

- Pythagorean Identities:

$$[\sin^2(x) + \cos^2(x) = 1]$$

$$[1 + \tan^2(x) = \sec^2(x)]$$

$$[1 + \cot^2(x) = \csc^2(x)]$$

- Angle Sum and Difference Identities:

 $[\sin(a pm b) = \sin(a)\cos(b) pm \cos(a)\sin(b)]$

 $[\cos(a pm b) = \cos(a)\cos(b) p \sin(a)\sin(b)]$

- Double Angle Identities:

$$[\sin(2x) = 2\sin(x)\cos(x)]$$

$$[\cos(2x) = \cos^2(x) - \sin^2(x)]$$

2. Using Inverse Trigonometric Functions:

To solve for (x), we can use inverse trigonometric functions.

- Example: $\(\sin(x) = 0.5 \)$

Volume 25 June - 2024

```
[x = \arcsin(0.5)]
```

The solutions are:\[$x = \frac{\pi c}{pi}{6} + 2k\pi \$ \quad $x = \pi - \frac{\pi c}{pi}{6} + 2k\pi \$ where \(k\) is any integer.

3. Algebraic Manipulation:

Rearranging and factoring the equation.

- Example: Solve $(2\cos^2(x) - 3\cos(x) + 1 = 0)$.

 $[\text{text}[y = \cos(x)]]$

$$[2y^2 - 3y + 1 = 0]$$

Factor the quadratic:

$$[(2y - 1)(y - 1) = 0]$$

So,
$$(y = \frac{1}{2})$$
 or $(y = 1)$.

Hence, $\(\cos(x) = \frac{1}{2}\)$ or $\(\cos(x) = 1\)$.

4. Graphical Methods:

Plotting the functions to find intersections.

- Example: To solve $(\sin(x) = 0.5)$, plot $(y = \sin(x))$ and (y = 0.5) on the same graph. The (x)-coordinates of the intersection points give the solutions.

General Solution Form

Trigonometric functions are periodic, so solutions are often given in a general form.

- For $(\sin(x) = a)$:

$$[x = \arcsin(a) + 2k\pi \cdot \frac{x = \pi x = \pi x}{\eta x = \pi x = \pi x}]$$
 where (k) is any integer.

- For $\(\cos(x) = a):\[x = \arccos(a) + 2k\pi \quad \text{or} \quad x = -\arccos(a) + 2k\pi \quad \text{or} \quad x = -\alpha(a) + 2k\pi \quad \text{or} \quad \x = -\alpha(a) + 2k\pi \quad \x = -\alpha(a)$
- For $(\tan(x) = a)$:

 $[x = \arctan(a) + k pi]$

where $\backslash (k \backslash)$ is any integer.

Examples and Solutions

1. Example 1:Solve $(\sin(x) = 0.5)$.

Solutions:

 $[x = \frac{\pi c}{pi}{6} + 2k\pi \cdot \frac{s}{6} + 2k\pi \cdot \frac$

2. Example 2:

Solve $\(\tan(x) = \sqrt{3} \).$

Solutions:

$$[x = \frac{\pi}{3} + k\pi]$$

where $\backslash (k \backslash)$ is any integer.

3. Example 3:

Solve
$$(\cos(2x) = -1)$$
.

Volume 25 June - 2024

Solutions:

 $[2x = \pi + 2k\pi]$ \[x = \frac{\pi}{2} + k\pi\] where \(k\) is any integer.

By applying these methods and principles, you can solve a wide range of trigonometric equations.

References

- 1. "Trigonometry" by Michael Sullivan
- 2. "Precalculus: Mathematics for Calculus" by James Stewart, Lothar Redlin, and Saleem Watson
- 3. "Trigonometry For Dummies" by Mary Jane Sterling
- 4. "Trigonometry Workbook For Dummies" by Mary Jane Sterling
- 5. "Algebra and Trigonometry" by Ron Larson
- 6. "Trigonometry" by Cynthia Y. Young