
 

American Journal of Research in Humanities and Social Sciences 
ISSN (E): 2832-8019              Volume 18, | November, 2023                      

 

P a g e  | 8  www.americanjournal.org 

 

ON THE BEHAVIOUR OF SOME PROBABILISTIC CHARACTERISTICS OF 

THE OUTPUT OF MULTIDIMENSIONAL RANDOM WALK FROM 

EXPANDING SETS 
Gafurov M. U. 

Tashkent State Transport University 

mgafurov@rambler.ru 

 

A B S T R A C T K E Y W O R D S 

This paper establishes an analog of the well-known theorem of P. J. 

Bickel and J. A. Yahav on the number of exits of a multidimensional 

random walk from expanding sets. This theorem and related problems 

are carried forward for the moment of the first exit. 
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Introduction  

Let 𝑋1 … 𝑋𝑛, be independent identically distributed random variables (RV's) with values in 𝑅𝑑, 𝑑 ≥ 1. 

Define 𝑆0  =  0 and 𝑆𝑛 = ∑ 𝑋𝑖
𝑛
1  for n≥1. For any Borel set 𝐴 ⊂  𝑅𝑑 we set (formally) 

𝑁(𝐴) =  ∑ 𝐼 (𝑆𝑛

∞

𝑛=1

⋲ 𝐴),   𝑇(𝐴) = inf {𝑛, 𝑆𝑛 ∉ A}  

There are many references dealing with the study of the RV's N(A) and T(A) in the case d=1 (see, for 

example, the monograph [1]). In the general case, when d > 1, it was proved in (2] that if 

𝐸𝑁(𝐴) =  ∑ 𝑃(𝑆𝑛 ⋲ 𝐴)

∞

𝑛=1

< ∞ 

for any bounded set A, then 

𝐸𝑒𝑥𝑝 {𝑡 𝑁(𝐴)} <  ∞ 

for all |𝑡| ≤  𝑡0 where 𝑡0, is some positive number. The asymptotic behavior of the moments of N(A) 

for an expanding set A was investigated in the same paper. As far as the author knows, the distribution 

of T(A) when d > l has not yet been studied in depth. 

Our purpose is to determine the asymptotic behavior of the moments of T(A) on sets of the form 𝐴 =

 𝐴𝑥 = {𝑦 ⋲  𝑅𝑑, ||𝑦|| < 𝑥}, where ||·|| is any norm in 𝑅𝑑, as well as the behavior of the “first flight of 

stairs” 𝑆𝑇(𝐴𝑥) 𝑎𝑠 𝑥 → ∞, In this connection we have proved the following statements. 

THEOREM 1. If 𝐸 ||𝑋1|| < ∞ , then for all k ≥0 

lim
𝑥→∞

𝐸𝑇𝑘(𝐴𝑥)

𝑥𝑘
=

1

||𝐸𝑋1||𝑘
. 

This theorem complements a result in [2] on𝑁(𝐴𝑥). 
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Let us consider a nondecreasing positive function φ(x) on [0, ∞) that is representable in the form 

𝜑(𝑥) = 𝑥𝑙𝐻(𝑥)  where 𝑙 ≥ 0 and H(x) is a slowly varying function in the sense of Karamata. 

THEOREM 2. Suppose that 𝐸𝑋1 ≠ 0 and 𝐸||𝑋1||
2

𝜑(||𝑋1||) < ∞, Then for any ε > 0 

∫ φ(𝑥)
∞

0

 𝑃{𝑆𝑇̅(𝐴𝑥) ⋲ 𝐴𝜀 𝑇(𝐴𝑥)
𝑐 } 𝑑𝑥 <  ∞ 

Here and in what follows 𝑆𝑛̅ = ∑ (𝑋𝑖 − 𝐸𝑋𝑖)
𝑛
1 , and 𝐴𝑢

𝑐  is the complement of 𝐴𝑢. 

REMARK. By retracing the course of the proof of Theorem 2 it can be shown that 

(1) ∫ 𝜑(𝑥) 𝑃{𝑆𝑇̅(𝐴𝑥)
∞

0
⋲  𝐴𝜀 𝑥

𝑐 } 𝑑𝑥 < ∞  

It is easy to see that if ε→0, then the left-hand side of (1) converges to ∞, and the asymptotic behavior 

of the integral with respect to ε is of interest. 

Let B be the covariance matrix of the 𝑅𝑉 𝑋1. In this case we have the following assertion, which extends 

results in [3]. 

THEOREM 3. Suppose that 𝐸𝑋1 ≠ 0 and 𝐸||𝑋1||𝑡+2 < ∞. Then 

lim
𝜀→0

𝜀2(1+𝑙) ∫ 𝑥1𝑃{𝑆𝑇̅(𝐴𝑥)  ⋲   𝐴𝑢
𝑐

∞

0

} 𝑑𝑥 = ∫ 𝑥𝑙𝑃𝜂
∞

0

⋲ 𝐴
√𝑥
𝑐 } 𝑑𝑥 

where η is a normal RV with expectation the zero vector and covariance matrix ||𝐸𝑋1||−1𝐵. 

We mention some consequences of Theorem 3 when d = 1. 

COROLLARY 1. Suppose that 𝐸𝑋1 ≠ 0 and 𝐸𝑋1
𝑙+2 < ∞ then  

lim
𝜀→0

𝜀2(𝑙+2) ∫ 𝑥𝑙𝑃{|𝑆𝑇̅(𝐴𝑥) > 𝜀𝑥
∞

0

}𝑑𝑥 =  
2Г (𝑙 +

3
2)

√π(𝑙 + 1)
(

𝐷𝑋1

|𝐸𝑋1|
)𝑙+1 

 

COROLLARY 2. If 𝐸𝑋1 ≠ 0 and 𝐸𝑋1
2 < ∞ then 

lim
𝜀→0

𝜀2 {∫ 𝑥𝑙𝑃{|𝑆𝑇̅(𝐴𝑥) > 𝜀𝑥
∞

0

} − 𝑃{𝑆𝑇̅(𝐴𝑥)}]𝑑𝑥} = 0 

 

The following lemma, which is also of independent interest, can be used to prove the 

theorems given above. 

LEMMA. a) Suppose that 𝐸𝑋1 ≠ 0. Then for any 𝜀 > 0 

lim
𝑥→∞

𝑃 {|
𝑇(𝐴𝑥)

𝑥
− ||𝐸𝑋1||

−1
| > 𝜀} = 0 

b) If 𝐸𝑋1 = 0, then for sufficiently large C>0 

lim
𝑥→∞

𝑃|𝑇(𝐴𝑥) > 𝐶𝑥 = 1 

REMARK. By using the results in (4] it can be shown that the assertions of the lemma 

remain in force when the RV 𝑋𝑘 takes values in a separable Banach space. 
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